Sie verwenden einen veralteten Browser und können nicht alle Funktionen dieser Webseite nutzen. Hier erfahren Sie, wie Sie Ihren Browser aktualisieren können.

OK
News / Presse | Karriere | Investoren

Broschüren

E-Book Deep Learning

Anwender sind imstande, Deep Learning-Anwendungen ohne Hardware-Entwicklung im FPGA zu programmieren – anhand der grafischen Entwicklungsumgebung VisualApplets. Mittels Datenfluss-Modellen lassen sich passende Netzarchitekturen unterschiedlicher Größe und Komplexität integrieren sowie vortrainierte Konfigurationsparameter für die Gewichte der Netze (weights) laden. Neue leistungsfähigere Camera Link Framegrabber wie der mit einer CNN-Runtime-Lizenz ausgestattete microEnable 5 marathon deepVCL enthalten bereits größere FPGA-Prozessoren, die für Deep Learning-Anwendungen mit der benötigten hohen Rechenleistung und Bandbreite notwendig sind. Anwender profitieren von langfristigen Einsparungen durch geringere Gesamtsystemkosten und schnelle Anpassbarkeit.

Jetzt kostenlos herunterladen